
 1

 NAS Technical Report NAS-10-001, November 2010

Performance Analysis of Scientific and Engineering

Applications Using MPInside and TAU

Subhash Saini1, Piyush Mehrotra1, Kenichi Taylor2, Sameer Shende3, Rupak Biswas1
1 NASA Advanced Supercomputing

NASA Ames Research Center
Moffett Field, CA 94035 USA

{subhash.saini, piyush.mehrotra,
rupak.biswas}@nasa.gov

2 Silicon Graphics International (SGI)
46600 Landing Pkwy

Fremont, CA 94538 USA
kenichi@sgi.com

3 ParaTools, Inc.
2836 Kincaid Street

Eugene, OR 97405 USA
sameer@paratools.com

ABSTRACT
In this paper, we present performance analysis of two NASA
applications using performance tools like Tuning and Analysis
Utilities (TAU) and SGI MPInside. MITgcmUV and
OVERFLOW are two production-quality applications used
extensively by scientists and engineers at NASA. MITgcmUV is
a global ocean simulation model, developed by the Estimating the
Circulation and Climate of the Ocean (ECCO) Consortium, for
solving the fluid equations of motion using the hydrostatic
approximation. OVERFLOW is a general-purpose Navier-Stokes
solver for computational fluid dynamics (CFD) problems. Using
these tools, we analyze the MPI functions (MPI_Sendrecv,
MPI_Bcast, MPI_Reduce, MPI_Allreduce, MPI_Barrier, etc.)
with respect to message size of each rank, time consumed by
each function, and how ranks communicate. MPI communication
is further analyzed by studying the performance of MPI functions
used in these two applications as a function of message size and
number of cores. Finally, we present the compute time,
communication time, and I/O time as a function of the number of
cores.

1. INTRODUCTION
Developing or porting codes on new computing
architectures to achieve good performance is a challenging
and daunting task for application scientists and engineers.
Performance of most of the real-world applications is less
than 10% of the peak performance on these computing
systems. Low performance is due to a number of
challenges facing the high-performance scientific
community, including increasing levels of parallelism
(threads, multi- and many-cores, nodes), deeper and more
complex memory hierarchies (register, multiple levels of
cache, on node NUMA memory, disk, network), and
hybrid hardware (processors and GPGPUs). In many cases,
factors such as runtime variation due to system noise,
traditional computer benchmarking is not sufficient to
understand the performance of large-scale applications. In
such cases, simple inspection of the profile (the timing
breakdown) is not adequate to analyze performance of

particularly MPI applications. One needs to know what is
happening “inside” both the application and the MPI
library and along with the interaction of the two.

The present study uses two performance tools (SGI’s
MPInside and TAU from University of Oregon) to profile
two production-quality applications (OVERFLOW-2 and
MITgcmUV, hereafter OVERFLOW-2 will be referred as
OVERFLOW). This study also uses the low-level MPI
function benchmarks to measure their performance as a
function of message size. The study was carried out on an
SGI Altix ICE 8200EX cluster, Pleiades, located at NASA
Ames Research Center. Pleiades consists of two sub-
clusters: one part based uses the Xeon 5472 Harpertown
processor [1–2] (hereafter called “Pleiades-HT”), and the
second uses Xeon 5570 Nehalem processor, the first server
implementation of a new 64-bit micro-architecture
(henceforth called “Pleiades-NH”) [3-4]. All the nodes
employ the Linux operating system and SGI MPT library
and are connected in a hypercube topology using
InfiniBand [5-6].

In this paper we have conducted the performance profiling
of OVERFLOW and MITgcmUV using the two
performance tools, MPInside and TAU, on Pleiades-HT
and Pleiades-NH. We have also evaluated and compared
the performance of MPI functions as a function of message
size on Pleiades-HT and Pleiades-NH.
The remainder of this paper is organized as follows:
Section 2 describes the two performance tools, SGI’s
MPInside and TAU from University of Oregon, used in the
study. Section 3 gives the overview of the applications
and MPI function benchmarks. Section 4 presents and
analyzes results from running these benchmarks and
applications on the two clusters. Section 5 contains a
summary and conclusions of the study.

 2

2. Performance Tools Used
Based on an initial survey and looking into pros and cons
of each performance tool, we decided to use two tools,
MPInside and TAU, to conduct in-depth performance
analysis of two real-world applications used extensively by
scientists and engineers at NASA [7-22]. MPInside is a
profiling and diagnostic tool developed by SGI to analyze
and predict the performance of MPI applications [15].
Tuning and Analysis Utilities (TAU) developed by
University of Oregon, and supported by ParaTools, Inc., is
a portable profiling and tracing toolkit for performance
analysis of parallel programs [14].

3. Applications and Benchmarks
3.1 Science and Engineering Applications

For this study, we used two production applications, taken
from NASA’s workload. OVERFLOW, developed at
NASA’s Langley Research Center, is a general-purpose
Navier-Stokes solver for CFD problems [23]. MITgcmUV,
developed by the Estimating the Circulation and Climate
of the Ocean (ECCO) Consortium, is a global ocean
simulation model for solving the fluid equations of motion
using the hydrostatic approximation [24].

3.2 Intel MPI Benchmarks (IMB)

The performance of real-world applications that use MPI
as the programming model depends significantly on the
MPI library and the performance of various point-to-point
and collective message exchange operations supported by
the MPI implementations. Intel MPI Benchmarks (IMB),
(formerly, the Pallas MPI Benchmarks) is a commonly
used benchmark suite to evaluate and compare the
performance of different MPI implementations [25].
The MPI standard defines several collective operations,
which can be broadly classified into three major categories
based on the message exchange pattern: OnetoAll,
AlltoOne, and Alltoall. We have evaluated the performance
of MPI_Bcast, MPI_Reduce, MPI_Alltoall, and
MPI_Allreduce collective operations on both clusters.

4. Results
In this section, we present the results of our study.

4.1 Scientific and Engineering Applications

4.1.1 MITgcmUV
Figure 1 shows the sustained performance of MITgcmUV
using TAU and MPInside.

Figure 1: Sustained performance of MITgcmUV on Pleiades-HT

Sustained performance of MITgcmUV is about 1.2–1.4% of
the peak, which is relatively low, as most of the applications
have sustained performance around 3–8% of peak. We have
not looked into the cause of this low performance from
processor and memory subsystem perspective here but have
only investigated the role of various MPI functions for the
application.
In Figure 2, we show the percentage of time for total,
compute, communication, and I/O times on Pleiades-HT and
Pleiades-NH. As expected, percentage of compute time
decreases and communication time increases for increasing
numbers of cores for both systems. Percentage contribution
of I/O time increases for large number of cores. On 64 cores
of Pleiades-NH compute is 93%, communication 3.5%, I/O
3.5%. Corresponding numbers for 480 cores are: compute
59.1%, communication 23.4%, and I/O 17.5%.

Figure 2: Time percentage of MITgcmUV using MPInside on two
systems.

Figure 3 shows the read, write, and (read+write) times for
MITgcmUV on two systems. Read time is almost the same
on both systems; however, write time on Pleiades-HT is
much higher than on Pleiades-NH—it writes 8 GB of data.
This is due to the fact that Pleiades-NH has three times
more memory than Pleiades-HT so one is measuring writes
to buffer cache in memory. On the other hand, on Pleiades-
HT one is measuring “write time” to disk because there is
not enough memory to hold all 8 GBs of output data.

 3

Figure 3: I/O times for MITgcmUV using MPInside on two systems.

In Figure 4, we plot the write bandwidth on the two
systems. Write bandwidth on Pleiades-NH is about 55%
higher than on Pleiades-HT. As mentioned in the previous
paragraph, this is due to the fact that there is three times
more memory per core in Pleiades-NH than Pleiades-HT—
write is done using the memory buffer as opposed to disk
write in Pleiades-HT.

Figure 4: Write bandwidth of MITgcmUV on two systems.

In Figure 5, we plot the percentage of time spent in each of
the MPI functions in MITgcmUV. Percentage of
communication time spent is 60, 30, and 5% in MPI_Recv,
MPI_Allreduce, and MPI_Waitall, respectively. Only 5%
of the time is spent in MPI_Send, MPI_Isend, MPI_Bcast,
and MPI_Barrier.

Figure 5: Percentage of time spent in MPI functions for MITgcmUV.

In Figure 6, we plot the minimum, average, and maximum
message size of MPI_Recv in MITgcmUV using
MPInside. The average message size varies from 3–9 KB.

Figure 6: Message size of MPI_Recv in MITgcmUV using MPInside.

With both the tools the message size in MPI_Allreduce is 8
bytes for cores ranging from 60 to 480. Since data size is
only 8 bytes, MPI_Allreduce is network latency-bound in
MITgcmUV. A message size of 225 KB is broadcast to all
cores. Message sizes for all MPI functions in MITgcmUV
including MPI_Recv, MPI_Allreduce, and MPI_Bcast
were the same, as measured by TAU and MPInside.

4.1.2 OVERFLOW
In this subsection, we present results for OVERFLOW
using the performance tools MPInside and TAU. Only the
results obtained using MPInside are shown, as they are
same as those obtained by using TAU.
Figure 7 shows the sustained performance of
OVERFLOW. Sustained performance is about 2.5% of
peak. Performance of OVERFLOW is slightly better than
MITgcmUV. We notice that even for 16 cores (2 nodes),
performance is low. We did not investigate the cause of
this low sustained performance but believe it is related to
processor and memory subsystem.

Figure 7: Sustained performance of OVERFOW.
Figure 8 shows the percentage of computation,
communication, I/O, and total time on both systems. On
both systems, percentage of computation time decreases as
the number of cores increase from 32 to 128 and then
increases for 256 cores. In addition, percentage of
communication time increases as the number of cores
increases from 32 to 128, and then decreases for 256 cores.
For 256 cores on Pleiades-HT: computation 62%,
communication 25%, and I/O 13%; Pleiades-NH:
computation 52%, communication 33%, and I/O 15 %.

 4

Figure 8: Percentage of computation, communication, I/O, and total time
in OVERFLOW using MPInside.
Figure 9 shows the I/O time for OVERFLOW on the two

Figure 9: I/O time in OVERFLOW for Pleiades-HT and Pleiades-NH.
systems. I/O times are better on Pleiades-NH than on
Pleiades-HT. Performance of (read+write) is better on
Pleiades-NH than Pleiades-HT by a factor of 1.4 for all
core counts except at 128 cores where it is a factor of 1.7.
Figure 10 shows the read and write bandwidth in
OVERFLOW for the two systems. Size of input data file
read is 1.6 GB, and size of the solution file written is 2
GB. Both read and write bandwidths are higher on
Pleiades-NH than on Pleiades-HT. The reason for this is
that memory per node is three times higher on Pleiades-
NH than on Pleiades-HT (24 vs. 8 GB), so size of memory
buffers is higher in the former. Performance of the write
bandwidth in OVERFLOW is almost the same as in
MITgcmUV, although data written is four times larger in
MITgcmUV (2 vs. 8 GB).

Figure 10: Read and write bandwidth in OVERFLOW for two systems.

In Figure 11, we show times for the top five MPI
functions. Most of the time is consumed by the two
functions MPI_Waitall and MPI_Gatherv, followed by
MPI_Recv and MPI_Send and the lowest time by
MPI_Bacst. For 128–256 cores, time for MPI_Waitall and
MPI_GatherV decreases, whereas time for MPI_Recv,
MPI_Send, and MPI_Bcast remains almost constant.

Figure 11: Timings for the top 5 MPI functions in OVERFLOW.
Figure 12 shows percentage time for the top 5 MPI
functions. Percentage of time taken by MPI_Recv and
MPI_Send increases as the number of cores increases. Up
to 64 cores, percentage of time taken by MPI_Send is more
than MPI_Recv and then it becomes the same for 128 and
256 cores. For higher numbers of cores, percentage time
consumed by all MPI functions increases, except for
MPI_GatherV. At 256 cores, percentage of time consumed
by MPI_Waitall is the highest. The function MPI_Waitall
waits for all communications to complete. At 256 cores,
percentage of time contributions are MPI_Waitall 36%,
MPI_GatherV 21%, MPI_Recv 17%, MPI_Send 17%, and
MPI_Bcast 9%.

Figure 12: Percentage time for the top 5 MPI functions in OVERFLOW
using MPInside.
Figure 13 shows the minimum, average, and maximum
message size of MPI_Send in the OVERFLOW
application. Message size decreases as the number of cores

 5

increases. The average message size for MPI_Send is 348,
129, 80, and 54 KB for 16, 128, 256, and 512 cores,
respectively.

Figure 13: Message size for the MPI_Send function in OVERFLOW
using MPInside.

Figure 14 shows the minimum, average, and maximum
message size for MPI_Recv. For all three cases, size first
increases up to 32/64 cores, and then decreases up to 512
cores. Average message size for MPI_Recv is 53, 104, 144,
and 219 KB for 16, 128, 256, and 512 cores respectively.

Figure 14: Message size for the MPI_Recv function in OVERFLOW
using MPInside.

Figure 15 shows the message size for MPI_Bcast. Message
size for MPI_Bcast is 1.29 MB in the OVERFLOW
application from 16 to 512 cores.

Figure 15: Message size for the MPI_Bcast function in OVERFOW using
MPInside.

Figure 16 shows the minimum, average, and maximum
message size for MPI_Gatherv. Average size of the
message gathered by MPI_Gatherv is 270 bytes for 16 to
512 cores. Since the size of the message is very small,
performance of MPI_Gatherv depends on network latency
and not on network bandwidth.

Figure 16: Message size for the MPI_Gatherv function in OVERFLOW
using MPInside.

4.2 Intel MPI Benchmarks (IMB)

In this section, we describe the performance of various
MPI functions relevant to the two applications
(MITgcmUV and OVERFLOW) used in this paper.

4.2.1 MPI_Sendrecv & MPI_Exchange
In Figure 17, we plot the performance of the
MPI_Sendrecv and MPI_Exchange benchmarks for small
messages on both systems. This plot provides insights into
the relationship between the message exchange pattern,
point-to-point message exchange algorithms, and overall
performance. On both systems, performance of the
MPI_Sendrecv benchmark is better than MPI_Exchange.
In the MPI_Exchange benchmark, each process exchanges
messages with both its left and right neighbors
simultaneously, whereas in the MPI_Sendrecv benchmark,
each process receives from its left neighbor and sends to
its right neighbor at any instant. Since the MPI_Sendrecv
benchmark involves a lesser volume of messages

 6

exchanged in comparison with MPI_Exchange, it is natural
to expect better throughput. We see a change in slope for
both benchmarks on the two systems around a message
size of 1 KB, which is due to a change of algorithm.

Figure 17: Performance of the MPI_Sendrecv and MPI_Exchange
functions on two systems for small messages.

In Figure 18, we plot the performance of the
MPI_Sendrecv and MPI_Exchange benchmarks for large
messages on both systems. We see a peak bandwidth with
a 16 KB message (3.6 GB/s for Pleiades-NH vs. 2.6 GB/s
for Pleiades-HT), which falls drastically for larger
messages and stabilizes at 2.3 GB/s for Pleiades-NH and
2.9 GB/s for Pleiades-HT. We believe this could be due to
cache effects as large message intra-node exchanges
usually involve making a copy from the user buffer to the
shared-memory buffers. As size of the data in the user
buffer grows, we may not be able to fit it in the cache,
leading to cache misses.

Figure 18: Performance of the MPI_Sendrecv and MPI_Exchange
functions on two systems for large messages.

Figure 19 shows the bandwidth of the MPI_Sendrecv
benchmark for a message size of 262 KB, which is the
average size used in MITgcmUV for the cores ranging
from 2 to 512. Bandwidth within a node (8 cores) is higher
on Pleiades-NH than on Pleiades-HT as the former uses
faster intra-node communication via QPI. Beyond 8 cores
(a node), the bandwidth on both systems is almost same
except at 512 cores where Pleiades-NH has higher
bandwidth.

Figure 19: Performance of the MPI_Sendrecv function on two systems for
a message size of 262 KB.

4.2.2 MPI_Bcast
Figure 20 shows the performance of MPI_Bcast for small
messages on the two systems. Up to a 1 KB message size,
performance on both systems is almost the same.
However, beyond that we notice there is a drastic change
of slope on both systems due to transition of algorithms
used in its implementation. In addition, performance is
better on Pleiades-NH than on Pleiades-HT.

Figure 20: Performance of MPI_Bcast on two systems for small
messages.

Figure 21 shows the performance of MPI_Bcast for large
messages on the two systems. Performance difference
between the two systems is small for 16 to 64 KB, and
then the performance gap increases as the message size
increases. Timings are (a) 64 KB: 289 vs. 481 µs, and (b) 1
MB: 5,398 vs. 8,038 µs on two systems.

 7

Figure 21: Performance of MPI_Bcast on two systems for large messages.

Figure 22 shows the performance of MPI_Bcast for a 1
MB message size used in OVERFLOW. We see that
performance on Pleiades-NH is higher than Pleiades-HT
for both intra- and inter-node communication.

Figure 22: Performance of MPI_Bcast on two systems for a 1 MB
message.

4.2.3 MPI_Allreduce
In Figure 23, we plot average time for the MPI_Allreduce
benchmark for small messages for both systems. Up to 64
bytes, performance is higher on Pleiades-HT and then from
128 bytes to 1 KB, performance is the same. From 2 KB
onwards, the performance gap continues to widen and at 8
KB, it is 40% higher (151 vs. 211 µs).

Figure 23: Performance of MPI_Allreduce on two systems for small
messages.

In Figure 24, we plot the average time for the
MPI_Allreduce benchmark for large messages for both
systems. Throughout all cores, performance on Pleiades-
NH is higher than on Pleiades-HT, and the performance
gap increases as the number of cores increases. At 16 KB,
times are 261 and 392 µs, and at 1 MB, they are 7,958 and
10,897 µs for Pleiades-NH and Pleiades-HT, respectively.

Figure 24: Performance of MPI_Allreduce on two systems for small
messages.

Figure 25 shows the performance of MPI_Allreduce on
two systems for a message size of 8 bytes used in
MITgcmUV. On both systems up to 64 cores,
performance of MPI_Allreduce is same and degrades
slowly as the number of cores increase. It may be recalled
that in MITgcmUV the average size of message broadcast
is 8 bytes. Since the message size is very small the
performance of MPI_Allreduce in MITgcmUV depends on
the network latency of the system. Network latency of
both systems increases with increasing number of cores
especially beyond 128 cores (1 IRU) and therefore
degrades rapidly.

Figure 25: Performance of MPI_Allreduce on two systems for an 8-byte
message.

4.2.4 MPI_Gatherv
Figure 26 shows the performance of MPI_Gatherv on two
systems for small messages. Up to a message size 4 KB,
performance of Pleiades-HT is much better than Pleiades-
NH, however for 8 KB message performance of Pleiades-
NH is better. The reason for this is the change in algorithm
for the implementation of MPI_Gatherv on MPT.

 8

Figure 26: Performance of MPI_Gatherv on two systems for small
messages.

Figure 27 shows the performance of MPI_Gatherv on two
systems for large messages. Up to 64 KB, performance of
Pleiades-HT is better than Pleiades-NH, however for 128
KB to 1 MB performance of Pleiades-NH is better.

Figure 27: Performance of MPI_Gatherv on two systems for large
messages.

Figure 28 shows the performance of MPI_Gatherv on two
systems for a message 262 KB. It is worth mentioning that
average message in MPI_Gatherv is 270 KB. Within a
node (8 cores), performance of Pleiades-NH is better than
Pleiades-HT—the former’s inter-socket communication is
faster due to QPI. Performance of both systems is same for
16 to 64 cores. Beyond 64 cores, performance of Pleiades-
NH is better than Pleiades-HT.

Figure 28: Performance of MPI_Gatherv on two systems for a 262 KB
message.

5. Summary and Conclusions
In this paper, we study the performance of two NASA
applications using two different analysis tools, TAU from
University of Oregon and SGI’s MPInside. We focus
particularly on the communication times analyzing the

performance of various MPI functions used in these
applications. One of the most interesting results reached by
our analysis is that relatively few functions in the MPI
library are used in the MITgcmUV and OVERFLOW
applications. The other conclusion is that write data
(solution file) is relatively small, namely 2 GB and 8 GB
for OVERFLOW and MITgcmUV, respectively, and is
performed sequentially.

There was wide variation in message lengths—the shortest
is 8-byte messages in MPI_Allreduce in MITgcmUV, and
the largest message length is 1.3 MB for MPI_Bcast in
OVERFLOW. Message length for MPI_Gatherv and
MPI_Recv used in OVERFLOW is 270 bytes and 100 KB,
respectively. Average message length for MPI_Recv and
MPI_Bcast used in MITgcmUV is 6 KB (actually 3 to 9
KB) and 225 KB. Overall, the conclusion that can be
drawn is that inter-core communication for hardware and
software must be optimized for both short and long
messages. This paper shows that a large percentage of
messages, for these applications, are not extremely long.

We used two different tools for analyzing the performance
of the MPI benchmarks and the two applications: SGI’s
MPInside and TAU from University of Oregon. TAU has
more extensive, sophisticated features and a nice visual
interface. However, it does have a steep learning curve and
to use it effectively, it is helpful to have support and
training. On the other hand, MPInside is easy to use for the
basic MPI functions but needs experience and training for
collectives. Also, MPInside needs a better user interface
and more features such as support to calculate the average
message sizes.

REFERENCES

[1] Intel 5400 Chipset - Technical Documents,
www.intel.com/Products/Server/Chipsets/5400/5400-
technicaldocuments.htm

[2] SGI Altix ICE,
http://www.sgi.com/products/servers/altix/ice/configs.
html

[3] Intel Microarchitecture (Nehalem),
http://www.intel.com/technology/architecture-
silicon/next-gen/

[4] “An Introduction to the Intel® QuickPath Interconnect,”
Document Number: 320412, January 2009.

[5] InfiniBand Trade Assoc., www.infinibandta.org/home
[6] Message Passing Toolkit (MPT) User’s Guide,

http://techpubs.sgi.com/library/manuals/3000/007-
3773-003/pdf/007-3773-003.pdf

[7] HPCToolkit, http://www.hipersoft.rice.edu/hpctoolkit/
[8] IMP, http://ipm-hpc.sourceforge.net/
[9] KOJAK, http://icl.cs.utk.edu/kojak/

 9

[10] mpiP, http://sourceforge.net/projects/mpip
[11] PAPI, http://icl.cs.utk.edu/papi/
[12] PDT (Program Database Toolkit),

 http://www.cs.uoregon.edu/research/pdt
[13] SvPablo, http://www.renci.org/projects/pablo.php
[14] TAU Performance System®, http://tau.uoregon.edu
[15] MPInside Reference Manual 3.01, SGI, 2010.
[16] Scalasca (Scalable Performance Analysis of Large-

Scale Applications), http://www.fz-
juelich.de/jsc/scalasca/

[17] OpenSpeedShop:
http://techpubs.sgi.com/library/tpl/cgi-
bin/browse.cgi?coll=0650&db=bks&cmd=toc&pth=/S
GI_Developer/SShop_UG

[18] Vampir - Performance Optimization,
http://www.vampir.eu

[19] Paraver, http://www.bsc.es/plantillaA.php?cat_id=485
[20] Jumpshot, http://www-

unix.mcs.anl.gov/perfvis/software/viewers/
[21] Vtune,

http://www.intel.com/software/products/vtune/vlin/index.ht
m

[22] PerfSuite, http://perfsuite.ncsa.uiuc.edu/
[23] OVERFLOW-2, http://aaac.larc.nasa.gov/~buning/
[24] ECCO: Estimating the Circulation and Climate of the

Ocean, www.ecco-group.org/
[25] Intel MPI Benchmarks: Users Guide and Methodology

Description, Intel GmbH, Germany.

